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Heat transfer from turbulent separated flows 
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Mechanical Engineering Department, Imperial College, London, S.W. 7 

(Received 31 January 1966) 

A power-law relation is derived between the Stanton number and the Reynolds 
number, expressing the law of heat transfer for a wall adjacent to a region of 
turbulent separated flow. The derivation is based on Prandtl’s (1945) proposal 
for the laws of dissipation, diffusion and generation of turbulent kinetic energy. 
The constants appearing in these laws are determined by reference to experi- 
mental data for the hydrodynamic properties of the constant-stress and the 
linear-stress layers. 

The agreement between the resulting predictions and the experimental data of 
other workers is sufficiently good to suggest that the actual mechanism of heat 
transfer from separated flows has much in common with that which is postulated. 
Closer agreement can be expected only after the present one-dimensional analysis 
has been superseded by a two-dimensional one. 

1. Introduction 1 .l .  The problem considered 

Turbulent separated flows occur, at  sufficiently high Reynolds numbers, at the 
rear of bluff bodies, in ducts downstream of abrupt enlargements, and in boundary 
layers upstream or downstream of step-like discontinuities in wall profile. They 
are accidental features of some classes of engineering equipment; and in others 
they may be deliberately introduced in order to augment heat-transfer rates to 
nearby walls. Current interest in flows of this type is attested by many recent 
publications; see for example Hansen 1964. 

The laws of heat transfer obeyed by turbulent separated flows exhibit charac- 
teristic features which have escaped explanation. One of these, to which Hanson 
& Richardson (1964), Richardson (1963), and Sogin (1964) have drawn special 
attention, is that the Stanton number is usually proportional to the - + power 
of the Reynolds number; this dependence contrasts strongly with that appropri- 
ate to attached turbulent boundary layers, for which the exponent is close to 
-0.2; it differs also from that of laminar boundary layers, which exhibit a 
square-root dependence. Another typical feature is that the local value of the 
heat flux depends almost entirely on the difference between the temperature of 
the stream and the local temperature of the wall; the temperature of the wall a t  
nearby points has little influence. This behaviour, which simplifies the task of 
the designer, contrasts strongly with that exhibited by attached boundary 
layers, whether laminar or turbulent. 

Of particular interest is that the heat flux often exhibits a maximum value at  
the location of boundary-layer re-attachment; values of heat flux three or four 
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times as great as those prevailing a short distance downstream have been reported 
by Seban, Emery & Levy (1959) and by Ede, Hislop & Morris (1956). This fact 
assumes particular interest when it is recalled that, at the re-attachment point, 
the (time-mean) shear stress is zero; and most formulae for calculating heat- 
transfer rates which are based on a physical theory of flow in the boundary layer 
would predict that, where the shear stress is zero, the heat transfer rate must also 
vanish. 

To bring understanding of heat transfer from separated flows up to the modest 
level of satisfactoriness appertaining to heat transfer from attached boundary 
layers, a theory is required which is based on different assumptions from those 
usually employed. Such a theory is provided by the present paper. 

1.2. Outline of the present contribution 

One of the characteristic features of separated flows is that the locations of 
maximum shear stress are remote from the wall; indeed the greatest stresses are 
commonly to be found in layers which are similar, particularly in respect of lack 
of influence of viscosity, to the free-mixing layer studied by Liepmann & Laufer 
(1947). This is a second point of contrast with the attached boundary layer on a 
flat plate, for example; for, in such a boundary layer, the maximum shear stress 
occurs a t  the wall itself, where of course the viscosity exerts its maximum in- 
fluence. 

A consequence of this feature is that the turbulence which is generated in the 
remote high-shear region of a separated flow must be conveyed to the vicinity of 
the wall by the action of convection and diffusion; the turbulence intensity in 
the vicinity of the wall, which is a main determinant of heat transfer, is governed 
by the interaction of these two factors with turbulence dissipation. By contrast, 
the turbulence level near a wall having an attached boundary layer is governed 
by the balance between the generation of turbulence near the wall and the dissipa- 
tion which occurs in the same locality. This, at any rate, is the view of the situa- 
tion which is adopted in the present paper. 

To convert these qualitative notions into a quantitative theory, it is necessary 
to postulate mathematical relationships describing the processes of generation, 
convection, diffusion and dissipation of turbulent energy. Fortunately, several 
authors have made proposals which may be utilized, including Prandtl (1945), 
Nevzglyadov (1945), Emmons (1954), Townsend (1961), and Glushko (1965); the 
present writer’s interest was stimulated particularly by the latter paper, but the 
ideas used are already quite explicit in Prandtl’s paper. None of the authors has 
applied the equations to separated flows. 

All separated flows of practical importance are two-dimensional in character; 
despite this, the present paper concerns a one-dimensional model of the flow near 
the wall. It must thus be regarded as bearing the same relationship to a complete 
theory as does a Couette-flow analysis to a complete two-dimensional theory of 
flow in an attached boundary layer. 

In  order to determine the constants which appear in the postulated relation- 
ships for the generation, diffusion and dissipation of turbulent energy, it is 
necessary to appeal to experimental information. When doing so, it is convenient 
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to re-examine the constant-shear and linear-shear layers which have already 
been treated, by Townsend (1961), from a point of view which exhibits both 
similarities to and differences from that of the present paper. With the constants 
so determined, a Reynolds-number dependence is predicted for heat transfer 
which is close to that which is found experimentally. Although the one- 
dimensionality of the model prevents an absolute prediction of heat-transfer 
rates, the order-of-magnitude agreement with experimental values is wholly 
satisfactory. 

2. Analysis 2.1. DeJinitions and assumptions 

We define the turbulent kinetic energy, k, by way of the equation 
-~ 

k = S{(U’)2 + (21 ’ )Z + (w’,”}. 
Here the quantities u‘, v‘ and w‘ represent the fluctuating components of velocity 
in the three co-ordinate directions, and the bars denote mean values with respect 
to time. The quantity k is supposed, like all other dependent variables in our one- 
dimensional model, to be a function only of the distance, y, from the wall bound- 
ing the fluid. We shall suppose that the state of the turbulence of the fluid at a 
particular point is characterized by only two quantities, namely k and y, the 
first giving the intensity and the latter the length scale of the turbulence. 

The composition of the fluid is supposed to be uniform, and the temperature 
differences to be small enough to have no influence on the other physical proper- 
ties of the fluid. 

It will be supposed that the intensity of turbulence is zero at the wall (y = 0 ) ,  
and that, where y exceeds a definite value, say yo, the effects of viscous action are 
negligible. Thus we postulate something akin to a laminar sublayer (y < yo), 
succeeded by a fully turbulent region (y > yo). 

For the fully turbulent region, we postulate the following laws to describe the 
processes of, respectively : turbulent-energy dissipation, turbulent-energy 
diffusion and turbulent-energy generation : 

rate of dissipation per unit volume = apk%/y; ( 2 . 2 )  

rate of diffusion into unit volume = 

rate of generation per unit volume = T(du/dy), (2.4) 

where 7/P = v m / d Y ) ,  (2.5) 

and v, = ck4y. (2.6) 

Here the quantities a, b and c are supposed to be constants; r stands for the 
shear stress, p for the fluid density, and u for the mean velocity of the fluid in the 
x-direction along the wall. The quantity v, is the ‘total’ kinematic viscosity, 
distinguished from its laminar counterpart, v without subscript, by satisfying 
(2.5) throughout the region of interest, whether the flow is laminar or turbulent. 
All the above relationships (apart from (2.5) which is a definition, and 
which holds whether y is greater or less than yo) may be justified by way of 
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dimensional analysis. They have been used by Prandtl (1945), Emmons (1954) 
and Glusliko (1965). The remainder of the analysis appears, however, to be novel. 

Por the region nearer the wall ( y  < yo), we make the following assumptions: 

(i) yo@/v = Y ,  a const.; (2.7) 

(iii) q / v  = 6{y/yo}; 

Here ko is of course the value of k prevailing where y equals yo. The quantity ( T ~  

is the 'totlal Prandtl number', that is to say, the local value of v l  divided by the 
local value of the total thermal diffusivity, the latter quantity being the one that 
makes the Fourier heat-conduction law valid throughout the whole region, 
whether the fluid is laminar or turbulent. The brackets {...> signify 'a function 
of', and CT without subscript stands for the laminar value of the Prandtl number. 

We can now write down an equation which expresses the fact that the turbulent 
kinetic energy is invariant with time. This may be called the energy-balance 
equation; it runs 

(2.11) 

Together with (2.5) and (2.6), this equation will permit us to calculate the 
distribution of turbulent kinetic energy in the fully turbulent region. Thereafter, 
we shall be enabled to calculate the temperature distributions, and so derive 
am expression for the heat-transfer rate. 

2.2 Solu,tion for the zero-shear layer 

At the point of reattachment of a turbulent boundary layer, the shear stress at 
the wall is zero, as has already been mentioned; and in all separated flows the 
local rate of generation of turbulence as a consequence of shear stresses is likely 
to be small in the vicinity of the wall. We therefore turn first to the extreme 
case in which the shear stress is zero, so that turbulence generation is absent. 
(2.11) reduces to 

(2.12) 

The solution of this equation can be written down at once; it is 
= const. ym+const. y-, (2.13) 

where the quantity m is defined by 

m = ($a/b)B. (2.14) 

By reference to the boundary condition (2.8), the solution can be written as 

(2.15) 
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Let us now suppose that, at a distance y1 from the wall, the turbulent kinetic 
energy has the value k,. Further, let us suppose that y1 is very much greater than 
yo. Then we can easily deduce that, if m exceeds unity, which will later be shown 
to be the case, we can write the relation between the kinetic energies at the inner 
and outer edges of the fully-turbulent layer as 

(2.16) 

We now choose, for later convenience, to introduce a reference velocity uG and 
a reference dimension D.  These might represent respectively the velocity of the 
main stream and the diameter of a bluff body, suspended in it,  behind which is 
formed the separated-flow region which we wish to study. If k, is eliminated by 
reference to (2.7), we deduce 

Equation (2.17) is a major result of the analysis. It will lead, in 32.4, to a 
power-law relation between the Stanton number and the Reynolds number. The 
latter quantity can be recognized in the last bracket on the right-hand side; and 
the term on the left-hand side will be shown to be proportional to the Stanton 
number. All the other terms can be expected to be constants for a given geometry 
of flow. First, however, we must determine the value of the quantity rn; this, as 
its definition (2.14) shows, depends on the relative size of the constants a and b,  
which express respectively the rates of dissipation and diffusion. The next 
section will be devoted to this determination. 

2.3. The determination of constants 

(i) We first turn our attention to the constant-stress layer. The energy-balance 
equation for the fully-turbulent region, (2.1 l ) ,  now becomes 

(2.18) 

Here the velocity gradient has been eliminated by reference to (2.5) and (2.6). 
7s is the shear stress throughout the layer. 

The solution is a simple one, namely 
k = (rs/P)/(ac)fr. (2.19) 

From this there follows v, = cba-i(rs/p)fry. (2.20) 

Experimental information, as summarized, for example, by Hinze ( 1959), 
shows that the turbulent kinetic energy is indeed uniform in a constant-shear 
layer, the ratio k/ (rs /p)  being approximately equal to 4.0. The same source of 
experimental information confirms that the total viscosity is proportional to 
(rS/p)fr y, the proportionality constant being about 0.4. Comparison with (2.19) 
and (2.20) thus leads to 

and 
a = 0.313, 

c = 0.2. 

(2.21) 

(2.22) 
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(ii) It is possible to determine the diffusion constant, b, by the examination of 
experimental data of several kinds. We here make use of the data which are 
available for the velocity distribution near a wall under conditions of adverse 
pressure gradient and small shear stress at the wall; in these conditions the shear 
stress r i s  linear in y, so that it is profitable to make an analysis of the distribution 
of k in a boundary layer for which r is proportional to y. 

(2.23) Let 
TIP = P ' Y ,  

where p' is a constant. Then the differential equation (2.11) becomes 

The solution of this equation is easily shown to be 

(2.24) 

(2.25) 

Combination of this result with (2.5)) (2.6) and (2.23) swiftly leads to an 
expression for the velocity distribution in the neighbourhood of the wall; it  is 

(2.26) 

A similar result was derived by Townsend (1961), whose expressions for the 
diffusion rate and shear stress differed, however, significantlyt from those of 
(2.3), (2.5) and (2.6). 

Townsend showed, by examination of the experimental data of Schubauer & 
Klebanoff (1951)) that the velocity profile indeed obeyed a law like (2.26) in 
the neighbourhood of the wall, even though the shear stress at the wall was not 
precisely zero. Townsend expressed the data in the form 

(2.27) 

in which K O  was found by examination of the experimental data to equal 
0.48 T 0.03. We can therefore deduce, by comparison of (2.26) and (2.27), and 
by introduction of the values of a and c already established, that the value of b 
lies within the limits shown in the following table. Corresponding values of m 
and of m/(m + 3) are also included in the table for later convenience; they have 
been deduced via (2.14). 

KO b m m i b +  3) 
0.45 0.079 2.43 0.45 
0.48 0.108 2.08 0.41 
0.51 0.130 1.90 0.368 

f In placo of (2.5) and (2.6), Townsend took the shear stress to be a universal constant 
times the local kinetic energy; for the zero-stress layer, this would not be satisfactory. 
In place of (2.3), Townsend assumed that the rate of diffusion into unit volume was 
proportional to the first differential coefficient of the 8 power of the kinetic energy. 
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In  the following discussion, the value 0.1173 will be adopted for b,  to which 
corresponds a round value of rn, namely 2.0. 

(iii) In  the following table are summarized, for comparison with the values 
here adopted, the constants proposed by Wieghardt (1945) in an appendix to 
Prandtl's paper, and by Glushko (1965). Wieghardt based his dissipation constant 
on data for the decay of isotropic turbulence, his diffusion constant on data for 
the turbulent-energy distribution near the centre line of a parallel-sided duct, and 
his total-viscosity constant on the measured velocity distribution near a wall. 
Glushko chose his total-viscosity constant by reference to data presented by 
Hinze (1959); the other two constants were fixed by carrying out a large number 
of integrations of the two-dimensional turbulent-energy equation, simultaneously 
with those for momentum and continuity, and selecting those values which gave 
the best agreement with experimental data for velocity and turbulent-energy 
distributions. 

Author a b c bla blc 
Wieghardt 0.45 0.152 0.224 0.338 0.679 
Glushko 0.313 0.08 0.2 0.256 0.4 
Present 0.313 0.1173 0.2 0.375 0.587 

It should be noted that one implication of (2.26) is that bla cannot exceed 8; 
for, if it did, the multiplier of y* would be imaginary. 

2.4. Heat transfer through the turbulent layer and laminar sublayer 

(i) Having established the exponents on the right-hand side of (2.17), we 
now turn our attention to expressing the left-hand side in terms of a dimension- 
less measure of the heat-transfer coefficient, the Stanton number. If the heat 
flux through the layer is q, and the temperature measured above that of the wall 
is t ,  the Fourier heat-conduction equation can be written as 

Vt at 
q == cpp-- - ,  

q t  dY 

where cp stands for the specific heat of the fluid at constant pressure. 
Now the Stanton number S is defined by 

(2.28) 

(2.29) 

where t, is the temperature of the fluid at  the outer boundary of the turbulent 
layer, i.e. in the main stream. We can therefore deduce 

(2.30) 

Thus the Stanton number is proportional to v/(u,yo), as was stated a t  the end 
of $2.2. We shall now derive an expression for the proportionality constant, 
represented by the contents of the square bracket. 
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(ii) Let us suppose that, in the fully turbulent region, the total Prandtl number 
has a constant value; let the symbol for this be att. Following the practice of 
Spalding & Jayatillaka (1964), we split the integral into two parts, thus 

Now we can suppose that cr, differs from a,, only in the laminar sublayer; the 
upper integration limit of the first integral can therefore be placed equal to unity. 
Secondly, because of the hypothesis expressed by (2.9) and (2.10), we can 
evaluate the integral by reference to the extensive experimental data for the 
constant-stress layer, for which (rs/p)+ is equal to 0.5kg as stated in $2.3. Thus 
the first integral in the square bracket of (2.4) can be expressed as 

Now yo k&v is equal to the constant Y ,  to which we must later ascribe a value; 
and the integral is identical with the P function of Spalding & Jayatillaka (1964), 
which they determined from the examination of experimental data for turbulent 
flow in smooth pipes to be 

= P{a} M 9.24{(a/a,,)0’75- 1}, (2.33) 

where gtt is best taken as 0.9. Thus the first integral in the square bracket of 
(2.31) can be evaluated from 

(2.34) 

(iii) The second integral in the square bracket of (2.31) can be split as follows 

(2.35) 

The first term on the right-hand side can be evaluated for the constant-stress 
layer. Integration of (2.5) then leads to 

Here uo is of course the velocity where y equals yo in a constant-stress layer; U 
is thus a constant. 

The second term of (2.35) can be evaluated by the use of (2.6) and (2.16), the 
subscript 1 being omitted. We have 

Since yl/yo can be taken as much larger than unity, we can write this equation 

(2.38) 
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(iv) We are now in a position to write down a relation between the Stanton 
and Reynolds numbers for a separated-flow region; it results from the combina- 
tion ofthefollowingequations: (2 .17) ,  (2.30),  (2 .31) ,  (2 .34) ,  (2.36) and (2 .38) .  It is 

Values of the quantities m, c and uttt have already been recommended; they are 
2.0,0.2 and 0.9 respectively. It is now necessary to estimate values of Y ,  Y' and 
U ,  quantities which characterize conditions at  the join of the laminar sublayer 
and the fully-turbulent region. Here it will be possible to estimate only orders of 
magnitude . 

In  the constant-stress layer, 11.6 is often taken as the value of ~ ( 7 ~ / p ) * / v  at 
the join of the two regions; the linear and the logarithmic velocity profiles, valid 
respectively for the fully-laminar and fully-turbulent regions, intersect there. 
Inspection of the data for the turbulent-energy distribution reported by Hinze 
(1959) shows however that it is only when y ( ~ ~ / p ) * / v  equals about 40 that the 
influence of viscosity vanishes, Since kg equals 2rS/pin that case, the value of 80 
will be adopted for Y .  

Data for the velocity profile in a constant-shear layer show that, where 
y ( ~ ~ / p ) & / v  equals 40, ~ . ( 7 ~ / p ) - 4  equals 14.7. It follows that U equals one-half of 
14.7 (because ( ~ ~ / p ) *  equals one-half of k t ) ,  i.e. 7.35. 

yo to 2 for 
y < yo. We shall adopt Y' = 2m/3 ,  i.e. $, because it is an intermediate value and 
because the bracket 2 / [ 1 +  ( 3 / 2 m )  Y']  then equals unity. This term enters (2.39) 
with a small exponent, so little depends on the choice of value for Y'. 

Insertion of all the above values into (2 .39)  yields the equation for the 
Stanton number of separated flows in the form 

The vaIue of Y' in a constant-stress layer varies from zero for y 

(2.40) 

3. Discussion 
3.1. Heat transfer from the downstream half of a circular cylinder 

Richardson (1963) has examined experimental data for the heat transfer from 
the rear half of a circular cylinder which is held at right angles to a steady stream 
of air. He recommends an expression which we may write as 

u,D 0.067 
( 3 ° . 4 8  z 0.1 (T) . 

Here D is the cylinder diameter and 
In the experiments examined by Richardson, the Reynolds number, ( u a D / v )  

was of the order of l o 5 .  The right-hand side of the equation is therefore approxi- 
mately equal to 0-215.  We shall now compare this with an estimate of the magni- 
tude of the right-hand side of (2.40). 

is the velocity of the free stream. 
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We may expect k$/u, to be of the order of 0.1 ; measurements of turbulent 
intensity behind a two-dimensional wall reported by Arie & Rouse (1956), con- 
firm this estimate. As to Dly,, this may be expected to be of the order of 10. 
Further, with the Prandtl number cr, equal to 0.7,  (2.33) yields P = - 1-98. 
Insertion of all these results shows the right-hand side of (2.40) to be approxi- 
mately equal to 0.15. This is to be compared with the 0.215 of the last 
paragraph. 

It must be concluded that the absolute agreement is as satisfactory as could 
be expected of an analysis based on such uncertain constants. Probably the 
greatest uncertainty is that concerning Dly,; it  springs from the fact that the 
model is one-dimensional whereas the experimental situation is two-dimensional. 

As to the fact that the present theory suggests that S is proportional to the 
- 0.4 power of the Reynolds number, whereas Richardson states that the experi- 
mental data are best fitted by the -0.333 power, three things are to be said. 
First, the scatter of experimental points may be fitted almost as well by curves 
expressing the former dependency as the latter. Secondly, a different choice of 
constants a and b in $2.3 could have led t o  a different value of m (but not, it must 
be admitted, to one corresponding to the - 0.333 power; for this is given only by 
the forbidden condition, b = 2a/3).  Thirdly, the separated flow at the rear of a 
circular cylinder is not entirely without shear; therefore, some turbulence is 
generated near the surface, with the consequence that the exponent is likely to 
be shifted slightly from that for zero shear (say, -0.4) towards that for high 
shear (say, -0.2). 

3.2. Heat transfer downstream of a step 

Seban et al. (1959) have reported heat transfer coefficients measured a t  the surface 
of a flat plate downstream of a rearward-facing step, the fluid being air. They 
state that average values of the heat transfer coefficient for the entire separated- 
flow region are proportional to the 0.6 power of velocity; this is in precise agree- 
ment with the prediction of (2.40), since the Stanton number is proportional to 
the heat-transfer coefficient divided by the stream velocity. 

The absolute agreement between the experimental data and the prediction can 
be assessed by taking, as an example, the Stanton number at  the re-attachment 
point for a particular experiment, namely, that reported in Seban’s figure 4, for 
a main stream velocity, uG, of 150 ft./s, and for a step height of 0.81 in. If the 
reference length D is the step height, insertion of the measured value shows that 
the value of (u,D/v)O.~S was about 0.35. 

The value of this quantity which is to be expected depends of course on the 
values ascribed to (k$/uG) and (D/yc) .  The former quantity is likely to have the 
value appropriate to a free mixing layer, because it is fluid from just such a layer 
which impinges on the re-attachment point; the data of Arie & Rouse (1956) 
would thus suggest that (k$/u,) is of the order of 0.25. With (D/gl) taken to be 
10, as before, and the Prandtl number CT equal to 0-7, we deduce that (t~,D/v)o.~S 
should be about 0.26. This value is as close to the experimental value, namely 
0.35, as can be required of a theory having so many sources of uncertainty. Once 
again, the major source results from the fact that turbulent energy is convected 
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to the region of the re-attachment point; a two-dimensional analysis is needed if 
the relative importance of convection and diffusion is to be determined quanti- 
tatively. 

3.3. Heat transfer downstream of a sudden enlargement in a pipe 

Ede et al. (1956) measured heat-transfer coeEcients downstream of a twofold 
enlargement in diameter of a pipe through which water was flowing; they found 
that, in the separated-flow region, the heat-transfer coefficients were three or 
four times as great as in the region, much farther downstream, where regular 
pipe flow became re-established. We shall now compare this result with the 
implications of (2.40) for this case. 

According to Spalding & Jayatillaka (1964), the Stanton number for turbulent 
flow in a smooth pipe, can be calculated from the formula 

Here the friction factor s ( = r s / (pu i ) ,  where uG is the bulk velocity in the pipe), 
can be calculated from the Blasius formula 

s z 0-04 (uGD/v)-~,  (3.3) 

where D is now the pipe diameter. 

subscript ‘sep’, combination of that equation with (3.2) and (3.3) yields 
If the Stanton number for separated flow, given by (2.40), is given the 

(3.4) 

At ( u G D / v )  equal to 9200, which happens to make the contents of the curly 
bracket equal unity, and which also lies well within the range investigated, 
(3.4) reduces to 

Now kk is presumably proportional to the velocity of the liquid in the narrow 
part of the pipe; this is 4U.G in the experiments of Ede et al. If the ratio is the same 
as for a mixing layer, namely about 0.25, as cited in the last section, (k+/uG) 
turns out to equal unity. (Dly,) may be taken as equal to 10 once more, in the 
absence of further information; then (3.5) reduces to 

SBep 2.9. (3.6) Xpipe 
Once again, a prediction has been obtained which is at least as close to experi- 

mental findings as the uncertainty of the foundations permits us to hope. 

4. Conclusions 
(a )  The main features of heat transfer in turbulent separated flow appear to 

be caused by the tendency of turbulent energy, generated in regions of free 
turbulence, to diffuse towards regions of lower turbulence. 
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( b )  The dependence of the heat-transfer rate on the Reynolds number is 
largely influenced by the relative magnitudes of the constants appearing in the 
dissipation and the diffusion laws of turbulent energy. The values recommended 
in $2.3 give good agreement with experiment. 

(c) The one-dimensional theory of the present paper gives results which agree 
well, in both tendency and order of magnitude, with the experimental data which 
have been cited. A two-dimensional theory, which can accommodate also the 
convection of turbulent energy, must be developed before closer agreement oan 
be expected. 

5. Nomenclature 
Equation of Jirst 

a Constant in dissipation law. 
b Constant in diffusion law. 
c Constant in total-viscosity law. 
D Reference dimension. 
k 
rn Constant. 
P Function of Prandtl number. 
p‘ Constant expressing pressure gradient. 
q Heat flow rate per unit area. 
S Stanton number. 
s Dimensionless shear stress at wall. 
t Temperature, measured above that of wall. 
U Constant. 
ua Reference velocity. 
u’, v‘, w’ 

Y Constant. 
Y’ Constant. 
y 
u Kinematic viscosity. 
p Density. 
(r Prandtl number. 
r Shear stress. 

Subscripts: 

Kinetic energy of turbulent motion. 

Fluctuating components of velocity in three directions 
at right angles. 

Distance from wall along normal. 

0 Join of laminar sublayer and fully turbulent region. 
1 Outer boundary of one-dimensional turbulent region. 

mention 
( 2 . 2 )  
(2-3) 
(2.6) 

(2.1) 

(2.17) 

(2.13) 
(2.33) 
(2.23) 
(2.29) 

(3.18) 

(2.36) 
(2.17) 

(2.29) 

(2.28) 

(2.1) 

(2.16) 
(2.15) 

(2.2) 
(2.5) 
(2.2) 

(2.10) 

(2.4) 

t Total, with contributions from both molecular and turbulent trans- 

tt Applied to IT to denote constant value for fully-turbulent conditions. 
S Surface. 

pipe Valid for fully-developed pipe flow. 

port. 

sep Valid for separated flow. 
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